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We have analyzed the effect of temperature heat source and radiation on mixed convective 

hydromagnetic flow of a viscous dissipative fluid through a porous medium over cylindrical 

annulus under radial magnetic field. The equations governing the flow and heat transfer are 

non-linear and coupled. These equations are solved by using Galerkin finite element method 

with quadratic interpolation polynomials. The interactions of various forces on the flow and 

heat transfer characteristics are analyzed. Shear stress, Nusslet number and Grashoff 

number are evaluated numerically for different values of the governing parameters under 

consideration and are shown in tabular form 
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1 INTRODUCTION 

 

Convective heat transfer in porous media has been studied by scientists and engineers in 

various disciplines. These include geophysics, hydrology, geothermal operations, heat 

exchange systems, packed-bed catalytic reactors, insulation engineering and many others. 

Cheng [5] has reviewed some excellent work resulting from these investigations. Most of the 

existing analytical studies deal primarily with mathematical simplification based on the 

Darcy’s law, which cannot account for the effects of a solid boundary, inertial forces, and 

variable porosity on fluid flow and heat transfer through porous media. Boundary effects are 

expected to become more noticeable when heat transfer is considered in the near-wall region. 

Inertial effects also become important when fluid velocity is high. Non-Darcian effects i.e., 

the boundary and inertial effects on heat transfer for constant porosity media were analyzed 

by Vafai and Tien [ 17  ] for forced convection, Kapur & Jain [ 6, 7 ] for mixed convection. 
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Both the boundary and inertia effects decrease fluid velocity in the thermal boundary layer 

and reduce heat transfer rates. 

 

In almost all these works, the boundary layer formulation of Darcy’s law and the energy 

equation were used. In the Non-Darcian natural convection flow, numerous investigations 

have been conducted. The inertia effect has been shown to decrease the heat transfer when 

the Rayleigh number is increased. The buoyancy effect due to a no slip boundary condition 

also results in a small Nusselt Number but is less pronounced as the Rayleigh number is 

increased. 

 

Reviews of previous work done on free-convection flow in the annular geometry completely 

filled with a porous material may be found in several research works. The Binkman flow of a 

laminar free convection flow in an annular porous region was studied by Sparrow et al [16]. 

Taking viscous dissipation into account in the energy equation, the free and forced 

convection flow through a porous medium in a coaxial duct has been analyzed by Vajravelu 

et al [18]. Beajan et al [3] has analyzed non-Darcy convective heat transfer through a porous 

medium in a cylindrical annulus with outer cylinder maintained at constant heat flux. 

 

In this chapter we analyze the effect of temperature heat sources and radiation effect on the 

mixed convective hydro magnetic flow of a viscous dissipative fluid through a porous 

medium in a cylindrical annulus under a radial magnetic field. The equations governing the 

flow and heat transfer are non-linear and coupled. These equations are solved by using 

Galerkin finite element method with quadratic interpolation polynomials. The interactions of 

various forces on the flow and heat transfer characteristics are analyzed. 

 

2. FORMULATION OF THE PROBLEM  
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We consider free and forced convection flow in a vertical circular annulus through a porous 

medium with the inner cylinder maintained at constant temperature and the outer cylinder is 

maintained at constant heat flux. Also the flow takes place under the uniform axial pressure 

gradient. The resulting flow is a free and forced convection flow through a porous medium in 

the coaxial duct. The entire flow region is subjected to the influence of a radial magnetic 

field. This apart the viscous dissipation is considered in the energy equation and the influence 

of the viscous dissipation on the flow and heat transfer is being considered.. Both the fluid 

and porous region have constant physical properties and the flow is a mixed convection flow 

taking place under thermal buoyancy and uniform axial pressure gradient. The Brinkman-

Forchheimer Extended Darcy model which accounts for the inertia and boundary effects has 

been used for the momentum equation in the porous region.  Here, the thermo physical 

properties of the solid and fluid have been assumed to be constant except for the density 

variation in the body force term (Bossiness approximation), and the solid particles and fluid 

are considered to be in local thermal equilibrium.  In the absence of any extraneous forces the 

flow is unidirectional along the axis of the duct assumed to be of infinite span. 

 

The Brinkman-Forchhemer - extended Darcy equation which account for boundary inertia 

effects in the momentum equation is used to obtain the velocity field, Based on the above 

assumptions the governing equations in the vector form are 

 

Equation of continuity 

0q                                                                 (2.1) 

 

Equation of linear momentum 

  2
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Equation of Energy 
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                                                                (2.3)  

 

Equation of State  

)( 00 TTg  
                                                                                  (2.4) 

 

where 
(0,0, )q u

 is the velocity, T is the temperature of the fluid, p is the pressure,  is the 

density of the fluid, Cp is the specific heat at constant pressure, k is the permeability of the 

porous medium,  is the coefficient of viscosity of fluid,  is the porosity of the medium,  is 

the coefficient of thermal expansion,  is coefficient of thermal conductivity,   is the 
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electrical conductivity and e  is the permeability of the medium, Q is the strength of the heat 

sources  and F is the function that depends on the Reynolds number and the microstructure of 

porous medium. Here the physical properties of the solid and the fluid state have been 

assumed to be constant except for the density variation in the body force term (Boussinesq 

approximation) and the solid particles and the fluid are considered to be in local thermal 

equilibrium. 

 

Since the flow is unidirectional, the equation of continuity reduces to 
0





z

u

. where ‘u’ is 

the axial velocity implies u= u(r). Also the flow is in unidirectional along the axial cylindrical 

annulus. Making use of the above assumptions the governing equations are 
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The equation of the energy which accounts for viscous dissipation is 
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The equation of continuity in view of the unidirectional flow reduces to 
0





r

u

  

Implies u = u(r), where u is the velocity component along axial direction,  

The boundary conditions are 

 u(a) = 0 =u(b)                            (2.7) 

and  T(a) = T0, r b

T
Q

r 

 
 

   (constant heat flux)                      (2.8) 

 

The axial temperature gradient 

T

z




assumed to be a constant by A. We define the following 

non-dimensional variables 

 
2

0

2
* ,    * ,     * ,     * ,     * ,     * ,    *
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Introducing these non-dimensional variables then the governing equations in the non-

dimensional form reduce to (on dropping the stars) 
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where  
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The corresponding boundary conditions are 
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 (non-dimensional constant heat flux) 

 

The shear stress are evaluated on the cylinder using the formula 

                      srdr

du
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The rate of heat transfer (Nusselt number) is evaluated on the cylinder using the formula 

                      srdr

d
Nu
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3. FINITE ELEMENT ANALYSIS 

 

The finite-element method (FEM) is such a powerful method for solving ordinary differential 

equations and partial differential equations. The basic idea of this method is dividing the 

whole domain into smaller elements of finite dimensions called finite elements. This method 

is such a good numerical method in modern engineering analysis, and it can be applied for 

solving integral equations including heat transfer, fluid mechanics, chemical processing, 

electrical systems, and many other fields. The steps involved in the finite-element are as 

follows. 

 

(i) Finite-element discretization. 

           (ii) Generation of the element equations. 

(iii) Assembly of element equations. 

(iv) Imposition of boundary conditions. 

(v) Solution of assembled equations. 

 

The assembled equations so obtained can be solved by any of the numerical techniques, 

namely, the Gauss elimination method, LU decomposition method, etc. An important 

consideration is that of the shape functions which are employed to approximate actual 

functions. 

 

4. Results and Discussion  

 

In this analysis we investigate non-Darcy convective heat transfer through a porous medium 

confined in a cylindrical annulus with the outer wall maintained at constant heat flux and the 

inner wall at constant temperature. The non-linear equations governing the flow and heat 

transfer have been solved by using Galerkine finite element technique. The velocity, the 

temperature, the stress ( ) and Nusselt number (Nu) have been calculated for different sets of 

parameters, viz G, M,
1D

and   in two cases viz., wide gap and narrow gap. The velocity w 

is exhibited in figures 1 - 4 in wide gap case and 9-12 in narrow gap case. The axial velocity 

is in the vertically downward direction and hence w > 0 represents the reversal flow. Figure 1 

& 9 represents the axial velocity w with Grashoff number G. It is found that both in wide and 

narrow gap cases the velocity changes from negative to positive as we move from the inner to 

the outer cylinder there  by indicating the reversal flow in the region adjacent to outer 

cylinder while for G <0 the reversal flow occurs in the vicinity  of the inner cylinder. The 

region of reversal flow enlarges with increasing |G|. The magnitude of w enhances with |G| in 

wide gap case while in a narrow gap case |w| reduces with increase in |G| 
3 3 10  and 

enhances with higher |G| 
3 5 10  the maximum occurs at r =1.2 in both the cases. The 

variation of w with 
1D

shows that lesser the permeability of the porous medium smaller |w| 



 

DR. K. GNANESWAR                                              7P a g e  

 

in both the cases (fig 3 & 11). Figures 2 & 10 represent the variation of w with Hartman 

number M. It is found that higher the Lorentz force smaller the magnitude of w in the flow 

region. The variation of w with heat source parameter   shows that an increase in the 

strength of heat source/sink enhances |w|. Also it is found that in wide gap case the reversal 

flow which appears in the vicinity at r = 2 disappear for higher  >0 while for  <0 we 

notice the reversal flow in the entire flow region. In narrow gap case for all values of | | we 

find reversal flow in the vicinity of outer cylinder and its size enlarges with  <0 in wide gap 

case while in narrow gap its size reduces with  >0 and enlarges with  <0 (fig 4 & 12). 

 

The non-dimensional temperature distribution ( ) is exhibited in figs 5 - 8 in wide gap case 

while in figs 13 - 16 in narrow gap case. It is found that the temperature is positive for all 

variations in 
1, , , 0G M D    and negative in for all  <0. It is found that the temperature   

enhances with |G| in wide gap case while in narrow gap case the temperature enhances in the 

flow region for G>0 while for G<0,   enhances except in the vicinity of the outer 

cylinder(fig 5 & 13).  The variation of   with 
1D

exhibits that lesser the permeability of the 

porous medium larger the temperature in a wide gap case and smaller the temperature in 

narrow gap case (fig 7 & 15). From figs 6 & 14 we find that the temperature depreciates in 

the flow region in both wide and narrow gap cases. The variation of   with   is exhibited in 

figs 8 & 16. It is found that an increase in the strength of a heat source/sink leads to an 

enhancement in the temperature in both wide and narrow gap cases. 

 

The shear stress  at the inner and outer cylinders have been evaluated for the different 

values of G, M, 
1D

, and   are represented in tables 1-16. It is found that the stress at r = 1 

is negative for G>0 and positive for G<0. An increase in |G| enhances | | and an increase in 

M or 
1D

 depreciates | | at r = 1 in both the cases. Also | | enhances with  >0 and 

reduces with  <0 in both wide and narrow gap cases (table 1, 2, 7 and 8). The shear stress 

at the outer cylinder enhances with increase |G| in wide gap case while in narrow gap case it 

reduces with |G|
3 3 10  and enhances with |G|

3 5 10 . The variation of  with 

1D
shows that lesser the permeability of porous medium smaller | | in wide gap case and 

larger | | in narrow gap case. Also higher the Lorentz force larger | | at the outer cylinder 

in both narrow and wide gap cases. An increase in the strength of heat source ( >0) 

enhances | | in wide gap cases and depreciates in narrow gap case while an increase  <0 

enhances | | in both the cases (tables 3, 4, 9 and 10). In general we notice that the shear 

stress in wide gap case is smaller compared to that in narrow gap case. 
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The rate of heat transfer at the inner cylinder has been calculated for different G, M, 
1D

, 

and   are represented in tables 5 & 6 in wide gap case in tables 11 & 12 in narrow gap case. 

It is found that the rate of heat transfer is negative at the inner cylinder for all variations. An 

increase in |G| reduces the rate of heat transfer at r = 1. The variation of Nu with 
1D

 reveals 

that lesser the permeability of porous medium smaller |Nu| in both the cases. Also higher the 

Lorentz force smaller the rate of heat transfer in wide gap case and larger |Nu| in narrow gap 

case. In wide gap case an increase in the strength of heat source  4 reduces the rate of 

heat transfer and for higher  6, we notice an enhancement |Nu| while in narrow gap case 

it reduces while  0. An increase with  <0 enhances the rate of heat transfer at the inner 

cylinder in both the cases (tables 5, 6, 11 & 12).  
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Figure 2. Velocity w with M 
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Figure 3. Velocity w with 
1D  
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Figure 4. Velocity w with   
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Figure 5. Velocity w with 
1D  
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Figure 6. Velocity w with   
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310 , N=1 

 i ii iii iv v vi 

  2 4 6 -2 -4 
-

6 

 

 

 

 

 

   

Figure 7. Temperature    with 
1D
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Figure 8. Temperature    with   

M = 2, G=
310 , 1D =

310 ,  N=1 
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Figure 9. Velocity w with G 
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Figure 10. Velocity w with M 
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Figure 11. Velocity W with 
1D  

M = 2,  G=
310  ,  =2,  N=1 
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Figure 12. Velocity W with   

M = 2,  G=
310  , 1D =

310 ,  N=1 
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Figure 13. Temperature     with   G 
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Figure 14. Temperature     with   M 

G = 
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Figure 15  Temperature     with  
1D
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Figure 16. Temperature      with      

M = 2,  G=
310 , 1D =

310 ,  N=1 
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Table – 1 

 
1

1 (   ),  2,  1
r

Shear stress at s wide gap case N 


    

G i ii iii iv v 
310  -0.88945 -0.7799 -0.58078 -0.88511 -0.87735 

33 10  -1.79112 -1.57034 -1.16782 -1.78321 -1.76771 

35 10  -2.69307 -2.36083 -1.75536 -2.68148 -2.65874 

310  0.88945 0.7799 0.58078 0.88511 0.87735 

33 10   1.79111 1.57033 1.16782 1.78318 1.76764 

35 10   2.69269 2.36076 1.7549 2.68025 2.65568 

M 2 3 5 2 2 

1D
 

310  
310  

310  
33 10  

35 10  

 

Table - 2 

  -1 3

1
1 (   ),  2,  10 , 1

r
Shear stress at s wide gap case M D N


     

G i ii iii iv v vi 
310  -0.88945 -1.03458 -1.18075 -0.59916 -0.48202 -0.33618 

33 10  -1.79112 -2.0828 -2.3742 -1.20866 -0.95203 -0.66066 

35 10  -2.69307 -3.13028 -3.56697 -1.82018 -1.42439 -0.98832 

310  0.88945 1.03458 1.18074 0.59916 0.48201 0.33617 

33 10   1.79111 2.08243 2.37328 1.20859 0.95205 0.66076 

35 10   2.69269 3.12766 3.56238 1.81988 1.4243 0.98822 

  2 4 6 -2 -4 -6 

 

Table - 3 

 
1

1 (   ),  2, 1
r s

Shear stress at s wide gap case N 
 

    

G i ii iii iv v 
310  0.00882 -0.02985 -0.08504 0.00665 0.00291 

33 10  0.02527 -0.05289 -0.16579 0.02142 0.01393 

35 10  0.04193 -0.07582 -0.24585 0.03677 0.02671 

310  -0.00881 0.02985 0.08503 -0.00665 -0.00291 

33 10   -0.02525 0.0529 0.16577 -0.02136 -0.01381 

35 10   -0.04128 0.07594 0.24634 -0.0346 -0.02152 

M 2 3 5 2 2 
1D
 

310  
310  

310  
33 10  

35 10  

 
Table - 4 

  -1 3

1
1 (   ),  2,  10 , 1

r s
Shear stress at s wide gap case M D N

 
     

G i ii iii iv v vi 

310  0.00882 0.15447 0.30077 -0.27894 -0.40924 -0.55544 

1D
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33 10  0.02527 0.3174 0.60926 -0.55607 -0.82517 -1.11672 

35 10  0.04193 0.4797 0.91684 -0.82926 -1.23683 -1.67238 

310  -0.00881 -0.15445 -0.30073 0.27891 0.40919 0.55537 

33 10   -0.02525 -0.31667 -0.60748 0.55599 0.82482 1.11619 

35 10   -0.04128 -0.47511 -0.90868 0.82962 1.23667 1.6722 

  2 4 6 -2 -4 -6 

Table - 5 

 
1

1 (   ),  2,  1
r

Nusselt Number Nu at s wide gap case N


    

G i ii iii iv v 
310  -0.81827 -0.81826 -0.81826 -0.81824 -0.81816 

33 10  -0.81801 -0.81801 -0.81802 -0.81775 -0.81724 

35 10  -0.81735 -0.81743 -0.81719 -0.81616 -0.81383 

310  -0.81827 -0.81826 -0.81826 -0.81824 -0.81817 

33 10   -0.81801 -0.81809 -0.81827 -0.81779 -0.81737 

35 10   -0.8178 -0.81767 -0.81775 -0.81792 -0.81882 

M 2 3 5 2 2 

1D
 

310  
310  

310  
33 10  

35 10  

 

Table – 6 

  -1 3

1
1 (   ),  2,  10 , 1

r
Nusselt Number Nu at s wide gap case M D N


     

G i ii iii iv v vi 
310  -0.81827 0.2778 1.37407 -3.0117 -4.07479 -5.17135 

33 10  -0.81801 0.27808 1.37399 -3.01004 -4.07202 -5.16725 

35 10  -0.81735 0.27845 1.37408 -3.0062 -4.06677 -5.16045 

310  -0.81827 0.2778 1.37417 -3.01181 -4.07507 -5.17189 

33 10   -0.81801 0.27757 1.37282 -3.01091 -4.07331 -5.16918 

35 10   -0.8178 0.27561 1.36919 -3.00838 -1.06962 -5.16458 

  2 4 6 -2 -4 -6 

 
Table – 7 

 
1

0.2 (   ),  2, 1
r

Shear stress at s narrow gap case N 


    

G i ii iii iv v 
310  -0.13184 -0.13148 -0.13031 -0.13182 -0.13178 

33 10  -0.33297 -0.33136 -0.32249 -0.33294 -0.33287 

35 10  -0.53701 -0.53379 -0.51672 -0.53693 -0.53679 

310  0.13184 0.13148 0.13031 0.13184 0.13182 

33 10   0.33297 0.33136 0.32249 0.33294 0.33287 

35 10   0.53701 0.53379 0.51672 0.53693 0.53679 

M 2 3 5 2 2 

1D
 

310  
310  

310  
33 10  

35 10  

 

1D
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Table – 8 

  -1 3

1
0.2 (   ),  2,  10 , 1

r
Shear stress at s narrow gap case M D N


     

G i ii iii iv v vi 
310  -0.13184 -0.13466 -0.13506 -0.13109 -0.13071 -0.13033 

33 10  -0.33297 -0.33639 -0.3398 -0.3281 -0.32668 -0.32327 

35 10  -0.53701 -0.5715 0.5442 -0.53165 -0.52535 -0.52273 

310  0.13184 0.13466 0.13506 0.13109 0.13071 0.13033 

33 10   0.33297 0.33639 0.3398 0.3281 0.32668 0.32327 

35 10   0.53701 0.5415 0.5442 0.53165 0.52535 0.52273 

  2 4 6 -2 -4 -6 

Table – 9 

 
1

0.2 (   ),  2, 1
r s

Shear stress at s narrow gap case N 
 

    

G i ii iii iv v 
310  -0.01622 -0.01628 -0.01646 -0.01622 -0.01623 

33 10  -0.00064 -0.00126 -0.00551 -0.00066 -0.00068 

35 10  0.02411 0.12258 0.013 0.02408 0.024 

310  0.01622 0.01628 0.01646 0.01622 0.01623 

33 10   0.00064 0.00126 0.00551 0.00066 0.00068 

35 10   -0.02411 -0.02258 -0.013 -0.2408 -0.024 

M 2 3 5 2 2 

1D
 

310  
310  

310  
33 10  

35 10  

 

Table – 10 

  -1 3

1
0.2 (   ),  2,  10 , 1

r s
Shear stress at s narrow gap case M D N

 
     

G i ii iii iv v vi 
310  -0.01622 -0.01475 -0.01404 -0.01762 -0.01832 -0.01902 

33 10  -0.00064 0.00259 0.00585 -0.00585 -0.00783 -0.011 

35 10  0.02411 0.02878 0.03219 0.01733 0.0114 0.00804 

310  0.01622 0.01475 0.01404 0.01762 0.01832 0.01902 

33 10   0.00064 -0.00259 -0.00585 0.00585 0.00783 0.011 

35 10   -0.02411 -0.02878 -0.03219 -0.01733 -0.0114 -0.00804 

  2 4 6 -2 -4 -6 

 

Table – 11 

 
1

0.2 (   ),  2,  1
r

Nusselt Number Nu at s narrow gap case N


    

G i ii iii iv v 
310  -5.37565 -5.37575 -5.37585 -5.37560 -5.37555 

33 10  -5.37560 -5.37555 -5.37575 -5.37555 -5.37550 

35 10  -5.37555 -5.37560 -5.37565 -5.37550 -5.37545 

310  -5.37550 -5.37555 -5.37560 -5.37545 -5.37540 

33 10   -5.37545 -5.37550 -5.37555 -5.37540 -5.37535 
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35 10   -5.37540 -5.37545 -5.37550 -5.37535 -5.37530 

M 2 3 5 2 2 

1D
 

310  
310  

310  
33 10  

35 10  

 

Table – 12 

  -1 3

1
0.2 (   ),  2,  10 , 1

r
Nusselt Number Nu at s narrow gap case M D N


     

G i ii iii iv v vi 
310  -5.37565 -5.18120 -4.98484 -5.76823 -5.96449 -6.16071 

33 10  -5.37560 -5.18110 -4.98474 -5.76813 -5.96449 -6.16061 

35 10  -5.37555 -5.18102 -4.98464 -5.76803 -5.96429 -6.16051 

310  -5.37568 -5.18122 -4.98484 -5.76826 -5.96452 -6.16074 

33 10   -5.37562 -5.18112 -4.98474 -5.76816 -5.96442 -6.16059 

35 10   -5.37558 -5.18100 -4.98464 -5.76806 -5.96432 -6.16046 

  2 4 6 -2 -4 -6 

 

 

 

 

 

 


