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We make an investigation of the radiation effect on an unsteady mixed convection heat 

transfer through a porous medium confined in a vertical channel on whose walls a traveling 

thermal wave in imposed-in the presence of the heat sources. The equations governing the 

flow and heat transfer which are non-linear and coupled have been solved by applying a 

regular perturbation technique with the aspect ratio  as a perturbation parameter. The 

effect of radiation on the entire flow characteristic has been shown by graphical 

representations of the velocity, temperature, shear stress and Nusselt number. 
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INTRODUCTION: 

 

The energy crisis has been a topic of great importance in recent years all over the world. This 

has resulted in an unabated exploration for new ideas and avenues in harnessing various 

conventional energy sources like tidal waves, wind power and geothermal energy. It is well 

known that in order to harness maximal geothermal energy one should have complete and 

precise knowledge of quanta of perturbation needed to initiate convection currents in mineral 

fluids embedded in the earth’s crest enables one to use mineral energy to extract the minerals. 

For example, in the recovery of hydrocarbons from underground petroleum reservoirs, the 

use of thermal processes is becoming important to enhance the recovery. Heat can be injected 

into the reservoir as hot water or stream or heat can be generated institute by burning part of 

the reservoir crude. In all such thermal recovery processes fluid flow takes place through a 

porous medium and convection flow through a porous medium at most important, 

determination of the external energy required to initiate convection currents needs a through 
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understanding of convective processes in a porous medium. There has been a great quest in 

Geophysicists to study the problem of convection currents in a porous medium heated from 

below. 

 

Transport of Momentum and thermal energy in fluid saturated porous media with low 

porosities were commonly described by Darcy’s model for conservation of momentum and 

by an energy equation based on the velocity field found from Kaviancy (6). In contrast to 

rocks, soil, sand and other media that do fall in this category, usually have high porosity. 

Vajravelu (9) examined the steady flow that of heat transfers in a porous medium with high 

porosity. Raptis (7) studied mathematically the case of time varying two-dimensional natural 

convective heat transfer of an incompressible electrically conducting viscous fluid through a 

high porous medium bounded by an infinite vertical porous plate. Jaiswal and Soundalgekhar 

(4) studied the natural convection in a porous medium with high porosity. 

 

Convection fluid flows generated by traveling thermal waves have also received attention due 

to applications in physical problems. The linearised analysis of these flows has shown that a 

traveling thermal wave can generate a mean shear flow with in a layer of fluid and the 

induced mean flow is proportional to the square of the amplitude of the wave. From a 

physical point of view, the motion induced by traveling thermal wave is quite interesting as a 

purely fluid dynamical problem and can be used as a possible explanation for the observed 

Four-day retrograde zonal motion of the upper atmosphere of Venus. Also, the heat transfer 

results will have a definite bearing on the design of oil or gas fired boilers. 

             

Vajravelu and Debnath (9) have made an interesting study of non-linear convection heat 

transfer and fluid flows, induced by traveling thermal wave. The traveling thermal wave’s 

problem was investigated both analytically and experimentally by Whitehead (10) by 

posulating series expansion in the square of the aspect ratio (assumed small) for both the 

temperature and flow fields. Whitehead (10) obtained an analytical solution for the mean 

flow produced by a moving source theoretically predictions regarding the ratio of the mean 

flow velocity to the source speed were found to be in good agreement with experimental 

observations in mercury which therefore justified validity of the asymptotic expansion a 

posteriori. Ravindra (8) has analyzed the mixed convection flow of a viscous fluid through a 

porous medium in a vertical channel. The thermal buoyancy medium in the flow field is 

created by a traveling thermal wave imposed on the boundaries. 

          

Recently Bharathi (1) has investigated the radiation effect on convective heat transfer through 

a porous in a vertical channel with traveling thermal wave.  In all the above a linear density 

variations is considered in the equation of state. This is valid for temperature variation at 

200C. But this analysis is not applicable to the study of the flow of water at 40C. The density 

of water is maximum at atmospheric pressure and the modified form of the equation to water 

at 40c is given by  
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    = -  (T)2 

where  = 8 x 10-6 (0c)-2. Taking this fact into account, Goren (2) showed in this case 

similarity solution for the free convection flow of water at 40c past a semi-finite vertical plate 

exists. Govindarajulu (3) showed that a similarity solution exists for the free convection flow 

of water at 40C from vertical and horizontal plates in the presence of suction and injection. 

Recently Jaffarunissa (5) has studied unsteady MHD convection heat transfer of a viscous 

electrically conducting fluid in a vertical channel with traveling thermal wave imposed on the 

walls. 

           

In this chapter we make an investigation of the radiation effect on an unsteady mixed 

convection heat transfer through a porous medium confined in a vertical channel on whose 

walls a traveling thermal wave in imposed-in the presence of the heat sources. The equations 

governing the flow and heat transfer which are non-linear and coupled have been solved by 

applying a regular perturbation technique with the aspect ratio  as a perturbation parameter. 

The effect of radiation on the entire flow characteristic has been shown by graphical 

representations of the velocity, temperature, shear stress and Nusselt number. 

 

2. FORMULATION OF THE PROBLEM 
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Fig.3 Schematic diagram of the flow configuration 

 

We consider the motion of viscous, fluid through a porous medium in a vertical channel 

bounded by flat walls. The thermal buoyancy in the flow field is created by a traveling 

thermal wave imposed on the boundary wall at y=L while the boundary at y= -L is 

maintained at constant temperature T1. The Boussinesq approximation is used so that the 

density variation will be considered only in the buoyancy force. Also the kinematic viscosity 

, the thermal conducting k are treated as constants. We choose a rectangular Cartesian 

system 0(x, y) with x-axis in the vertical direction and y-axis normal to the walls. The walls 

of the channel are at y= L. The equations governing the unsteady flow and heat transfer are 
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Equation of linear momentum 
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Equation of continuity     
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Equation of energy 
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Equation of state 

     
2)( eee TT  

                                             (4.5) 

where e  is the density of the fluid in the equilibrium state, eT  is the temperature and in the 

equilibrium state, (u, v) are the velocity components along O(x, y) directions, p is the 

pressure, T is the temperature  in the flow region,  is the density of the fluid,  is the 

constant coefficient of viscosity, Cp is the specific heat at constant pressure,  is the 

coefficient of thermal conductivity, k is the permeability of the porous medium,  is the 

coefficient of thermal expansion, r is the radiative heat flux and  Q is the strength of the 

constant internal heat source. 

 

Invoking Rosseland approximation (Brewester (1a)) for the radiative flux we get 
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                                                                                     (4.6) 

expanding 
4T  in Taylor series about Te and neglecting higher order terms (19a), 

434 34 ee TTTT 
                                                                                         (4.7) 

where 
  is the Stefan-Boltzman constant and R  is the mean absorbing coefficient. 

In the equilibrium state 

          
g
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p
e
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                     (4.8) 

where 
,e D Dp p p p 

 being the hydrodynamic pressure. 

The flow is maintained by a constant volume flux for which a characteristic velocity is 

defined as 
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The boundary conditions for the velocity and temperature fields are  

             u = 0,  v = 0,  T=T1                                          on y  = -L  

             20, v 0, ( )eu T T T Sin mx nt     
             on y  = L                       (4.10)          

where  12 TTTe 
 and )( ntmxSin   is the imposed traveling thermal wave 

In view of the continuity equation we define the stream function  as 

                       u = - y,  v =  x                                                                           (4.11) 

 

Eliminating pressure p from equations (4.2) & (4.3) and using the equations governing the 

flow in terms of  are 
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Introducing the non-dimensional variables in (4 .12 ) & (4.13)  as   
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the governing equations in the non-dimensional form ( after dropping the dashes ) are  
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The energy equation in the non-dimensional form is  
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where 

           

UL
R 

                    (Reynolds number) 

         

3

2

eg T L
G








            (Grashof number) 

       
)(

2

222

2 NumberHartmann
LH

M oe






 

        1k

C p


                   ( Prandtl number),  



 

DR. K. GNANESWAR                                          6P a g e  

 

       k

L
D

2
1 

                    (Darcy parameter), 

       Lm                         (Aspect ratio) 

      
2m

n


 

                      (Non-dimensional thermal wave velocity) 

      
34 e

R

T
N








               (Radiation parameter) 

      43

3

43

3
11







N

N

N

NP
P




 

    
2

2

2

2
22

1
yx 







 

 
The corresponding boundary conditions are  
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The value of  on the boundary assumes the constant volumetric flow in consistent with the 

hypothesis (4.9) .Also the wall temperature varies in the axial direction in accordance with 

the prescribed arbitrary function t 

 

3. ANALYSIS OF THE FLOW 

 

The main aim of the analysis is to discuss the perturbations created over a combined free and 

forced convection flow due to traveling thermal wave imposed on the boundaries. The 

perturbation analysis is carried out by assuming that the aspect ratio    to be small. 

 

We adopt the perturbation scheme and write  
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On substituting (4.19) in (4.15) & (4.16) and separating the like powers of  the equations 

and respective conditions to the zeroth order are 

               
RGM yoyyyyyyy /)(2 ,0,0
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and to the first order are 
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       Solving the equations (4.20) & (4.21). (4.24) & (4.25) subject to the relevant boundary 

conditions  (4.22), (4.23)(4.26) & (4.27) we obtain 
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appendixtheingiventsconsareBBBaaawhere tan....,.........,,......,........., 4217421  
               The shear stress on the channel walls is given by 
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The local rate of heat transfer coefficient ( Nusselt number Nu) on the walls has been 

calculated using the formula  
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and the corresponding expressions are 
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where a75,……….a97 constants given in the appendix. 

 

4. NUMERICAL RESULS 

 

In this analysis we discuss the radiation effect on the convective heat transfer through a 

porous medium confined in a vertical channel on whose walls a traveling thermal wave is 

imposed with quadratic density temperature variation. The velocity and the temperature 

distributions are analyzed for different sets of parameter 
-1, , ,   ,G R D    and x t  and are 

represented in figures 1 - 12. In the following discussion we use the notations that the channel 

walls are heated or cooled according as G>0 or G<0. We take 0.01   and p=0.71 0.71  . 

It is to be noted that the temperature variation on the boundary contributes substantially to the 

flow field. This contribution may be represented as perturbation over the mixed convection 

flow generated in the state of uniform wall temperature; the perturbation not only depends on 

the wall temperature variation, but also on the nature of the mixed convection flow. It may be 

noted in general that creation of the reversal flow zone in the flow field depends on whether 
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the free convection effects dominates over the forced flow or vice –versa. If the free 

convection effects are sufficiently large as to create reversal flow the variation in the wall 

temperature affects the flow pattern remarkably. 

 

Fig 1 represents the variation of the axial velocity (u) with Grashof number G. u<0 is the 

actual axial flow and u>0 is the reversal flow. It is found that no reversal flow exists 

anywhere in the flow region for any variation. The magnitude of u experiences an 

enhancement everywhere in the flow region with G>0 and depreciates with G<0. The 

maximum |u| occurs at y=-0.4 and at y=0.6 for G<0. From fig 2 we notice that lesser the 

permeability of the porous medium 
1D
 larger |u| in the left half and smaller |u| in the right 

half. An increase in thermal wave velocity   enhances |u| in the left half and reduces |u| in 

the right half of the channel. The behavior of u with Reynolds number R reveals that |u| 

enhances in the region -0.8y0.2 and reduces in the regions 0 0.8y   with increase in R. 

From fig.3 we find that |u| enhances in the left half and reduces in the right half with 0  . 

An increase in the phase x t    leads to an enhancement in |u| and reduces with 

higher x t    except in the vicinity of y =-1, (fig.4). 

                         

The secondary velocity (v) which arises due to the non-uniform temperature on the 

boundaries is shown in fig 5 – 8. It is found that for G>0 the secondary velocity is directed 

towards the boundary and is towards the mid region for G<0. |v| enhances with increase in 

G>0 and an increase in |G|
32 10  , |v| reduces in the left half and enhances in the right half 

and for higher |G|
33 10  , |v| experiences an enhancement in the entire flow field. From fig. 

6 shows that the variation of v with 
1D
 shows that lesser the permeability of the porous 

medium larger |v| in the left half of the flow region and in the right half |v| reduces with 
1 22 10D    and enhances with higher 

1 23 10D    enhances near the boundaries and 

enhances with higher 140R  . An increase in the thermal wave velocity   enhances |v| left 

half and reduces in the right half of the channel. The behavior of v with R shows that an 

increase in R 70  results in a depreciation in |v| in the central region (-0.2, 0.6). Fig-7 

represents the variation of v with heat source parameter  . We find that the secondary 

velocity v is directed towards the boundary for  >0 and for  =-2 and for | | 4  , the 

velocity in the region 0.8 0.2y    is towards the mid region and it is towards the boundary 

in the remaining region |v| experiences an enhancement with increase in the strength of the 

heat source/sink | | 4   and for higher  6 it reduces in the flow region except in the 

vicinity of y=-1. Whole |v| enhances with | | 6. Fig.8 shows that |v| fluctuates in the left 

half and reduces in the right half with increased in x t .   
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The non-dimensional temperature ( ) is exhibited in figs 9 – 12 for different values of 
-1, , , ,G R D   and x t . It is found from fig 9 that the actual temperature enhances with 

increase in G>0 and reduces with G<0. From fig. 10 the behavior of   with 
1D
 shows that 

lesser the permeability of the porous medium larger the actual temperature in the flow field 

and for further lowering of the permeability smaller the temperature in the region. Also an 

increase in    enhances   in the flow region. We find that higher the Reynolds number R 

larger the actual temperature in the flow region. From fig 11 the variation of   with heat 

source parameter   shows that    is positive for  >0, and for 0,   is negative in the 

central region and positive in the region adjacent to y =  1. We find that the actual 

temperature enhances with increase in the strength of the heat source and for  <0 the actual 

temperature experiences a depreciation. Fig. 12 shows that the actual temperature reduces 

with phase x t   and enhances with higher x t 2 . 

                        

The shear stress ( ) at the walls y =  1 have been evaluated for different variations in 
-1, , ,   ,G R D    and x t  are shown in tables 1 – 6. It is found that the stress at y =  1 

decreases with G>0 and enhances with G<0 at 
1 210D   while a reversal effect is noticed at 

higher
1 22 10D   , while at y=-1, the stress enhances with G>0 and reduces with G<0 for 

all 
1D
. Lesser the permeability of the porous medium larger the magnitude of the stress at 

both the walls in both heating and cooling cases and for further lowering of the permeability 

it reduces for G>o and enhances for G<0 at y= 1.where as a reversed  effect is noticed  at y=-

1. An increase in the thermal wave velocity   depreciates | |at y=-1 and enhances at y=1. 

The variation of   with an increase in R reduces | | for G>0 and enhances it for G<0 while 

at y=1, | | reduces with R70 for G>0 and enhances for G<0. While for higher 

R140,| |enhances for G>0 and reduces for G<0 at both the walls. | |enhances with| |for 

G>0 and reduces with | |for G<0 at y=  1. The variation of   with the phase x t reveals 

that the stress at y=1 depreciates for G>0 and enhances for G<0 for x t 2




 and for higher 

values of x t 2 , | | enhances for G>0 and reduces for G<0 at y = 1. 

                        

The Nusselt Number Nu at y=  1 is shown in tables 7 - 12 for different values of G,
1D
, 

,  and x t . It is found that the rate of heat transfer at y = 1 reduces with increase in 

G>0 at 
1D
=

210  and at higher
1 22 10D   , Nu enhances for G>0 and reduces for G<0 

while at y=-1 it increases with when 
1D
=

210  and decreases when 
1 22 10D    with G<0. 

The variation of Nu with 
1D
 shows that |Nu| depreciate with 

1 22 10D   for G>0 and 

reduces for G<0 at both the walls, and enhances with 
1 23 10D   at y=1 and reduces at y=-
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1. An increase in Reynolds Number R enhances |Nu| at y=  1 for |G|=
310 and reduces for 

3| | 3 10G    while at y=-1, |Nu| enhances for all G. An increase in   reduces Nu at y=+1and 

enhances at y=-1. The variation of Nu with heat source parameter   shows that |Nu| at y=1 

enhances for 6  , Nu enhances at |G|=
310  and reduces at 

1 23 10D    with increases in 
 >4 and in the case of  <0  it enhances with | |4 and for | |6 it enhances for G>0 and 

reduces for G<0. At y=-1 the rate of heat transfer depreciates with 0   at |G|= 
310  and 

enhances at 
3| | 3 10G   and it reduces with increase in 0   in both heating and cooling 

cases. The variation of Nu with phase x t show that |Nu| experiences an enhancement with 

increase in x t    and for higher values of 2x t    it depreciates for all G at both the 

walls. In general we notice that the rate heat transfer y=+1 is greater than that at y=-1.   
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